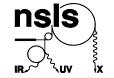

Coherent THz Pulses: Source and Science at the NSLS

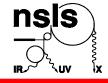
H. Loos, B. Sheehy, D. Arena, J.B. Murphy, X.-J. Wang and G. L. Carr National Synchrotron Light Source
Brookhaven National Laboratory
carr@bnl.gov

http://www.nsls.bnl.gov http://infrared.nsls.bnl.gov

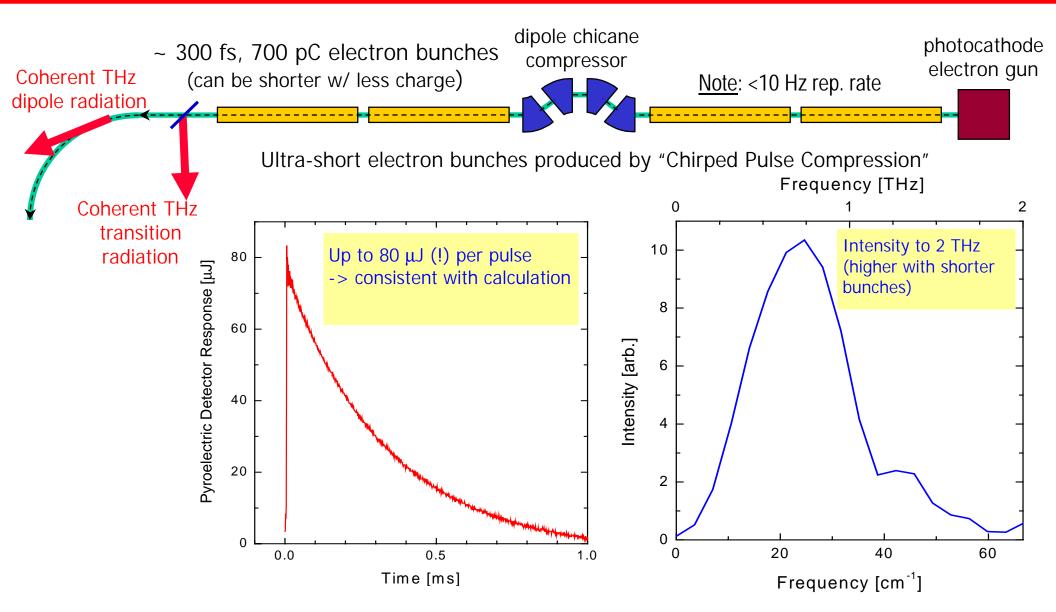
THz Workshop Jefferson Lab, Sept 20, 2004

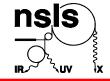

Funded under contract: DE-AC02-98CH10886

U.S. Department of Energy Office of Basic Energy Sciences



Coherent Synchrotron Radiation (CSR)

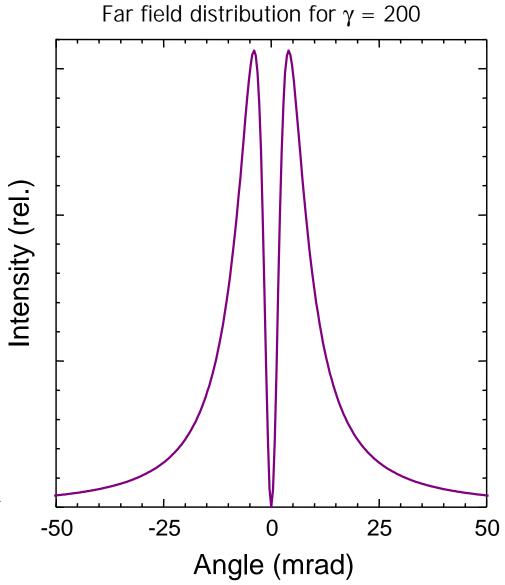

- 1st observations in linacs:
 - Nakazato et al (PRL '89), Happek et al (PRL '91)
- As a linac bunch diagnostic:
 - Shibata et al (PRE '94), Lai et al (PRE '94), Yan et al (PRL '00)
- As a THz source
 - Ishi et al (PRA '91), Takahashi et al (RSI '98), Carr et al., (Nature '02)
- CSR also from storage rings
 - Arpe et al, Carr et al, Anderson et al, Abo-Bakr et al. ...
 - Instability in low RF frequency machines


Coherent Transition Radiation from the NSLS SDL Linac

Compare to ~ 1 nJ from a conventional photoconductive switch and an amplified, 250 kHz rep rate drive laser

Transition Radiation from Relativistic Electron

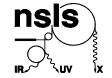
Transition radiation occurs when an electron crosses the boundary between two different media. For a relativistic electron ($\beta \equiv v/c \cong 1$) incident on a perfect conductor, the number of photons emitted per solid angle and wavelength range is:

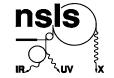

$$\frac{dN}{d\lambda d\Omega} = \frac{\alpha}{\pi^2 \lambda} \frac{\beta^2 \sin^2 \theta \cos^2 \theta}{\left(1 - \beta^2 \cos^2 \theta\right)}$$

Intensity is 0 on axis, peaks at $\theta \sim 1/\gamma$.

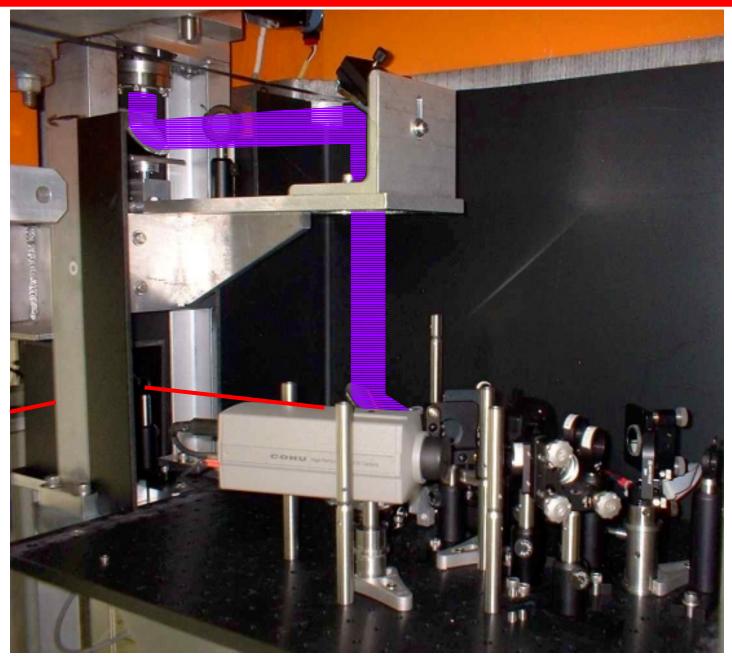
Polarization is radial

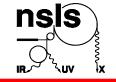
$$\frac{dP}{d\overline{v}} \approx 4.61 \times 10^{-26} \left(\ln \frac{2}{1 - \beta} - 1 \right)$$
 J/cm⁻¹ per electron


11.4 for 130 MeV
20 for 9 GeV

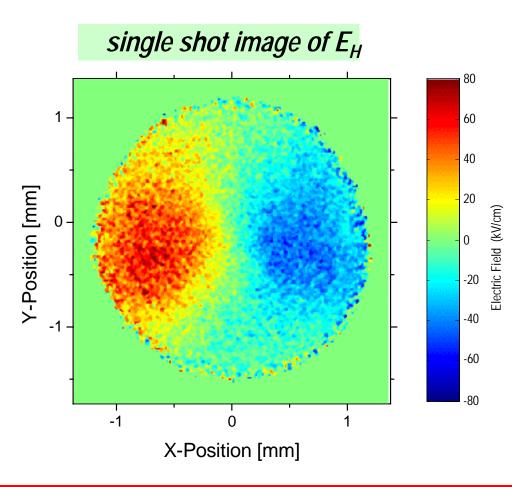


Electro-Optic THz Detection





THz and Sampling Laser Beam Path

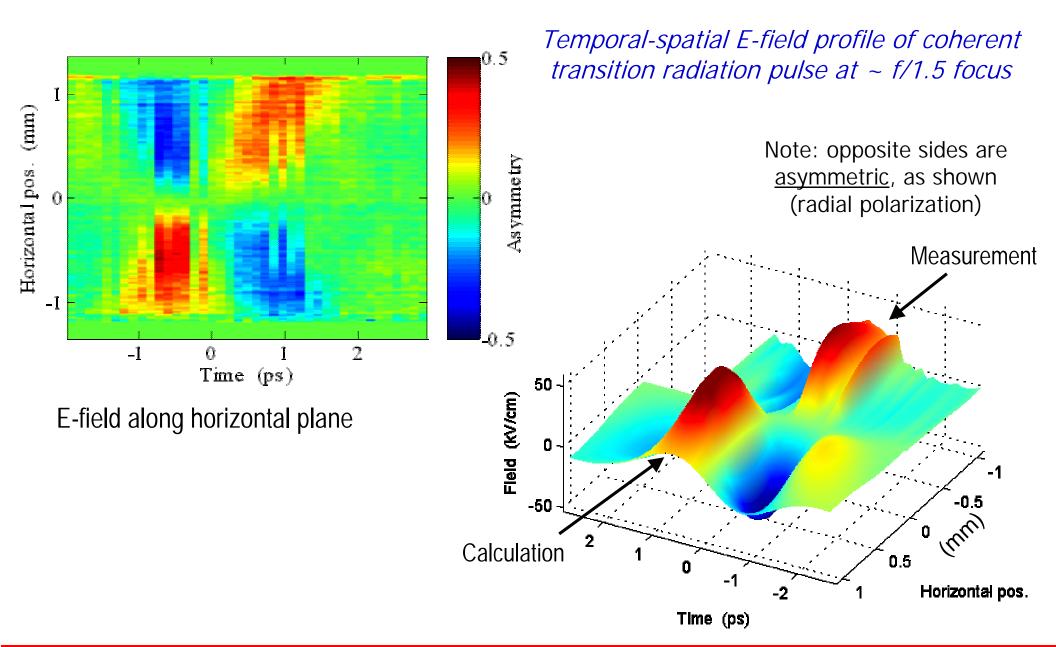

EO Detection of SDL Linac Coherent THz Pulses

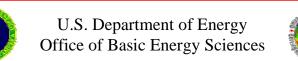
Focusing a 100 µJ pulse, 1 THz (nominal) pulse into a 1 mm³ volume yields an energy density of 10^5 J/m³, so that E = $[2D_F/\epsilon_0]^{1/2} \sim 10^8$ V/m (~ MV/cm).

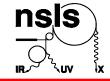
This E-field is too large for 500 µm ZnTe (E > 170 kV/cm yields > λ /4 phase shift)

=> Reduce compression, lower charge to get "on-scale"

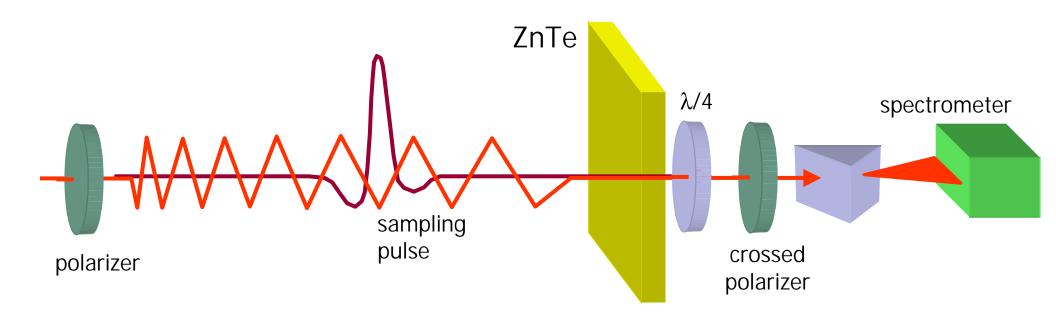

Transition Radiation is Radially Polarized



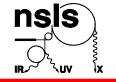




Temporal E-Field Cross Section at Focus



Electro-Optic Spectroscopy Method

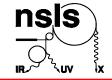

 DUV-FEL laser for photocathode (linac) provides synchronized sampling pulse for EO detection.

 Laser pulse is "chirped" and can be used for EO sampling of THz fields in single-shot mode. [Jiang and Zhang, APL (1998), also Wilke et al PRL 2002].

Studies using High-Field, Half-Cycle THz Pulses

A 100 µJ, half-cycle THz pulse, focused into a volume of 1 mm³ or less.

- E-field = $[2D_F/\epsilon_0]^{1/2}$ ~ 10⁸ V/m (~ 1 MV/cm).
- => Use large electric field to displace atoms in polar solids (structural phase transitions, soft modes, ferroelectricity, ...)
- H-field = E/c ~ 0.3 T
- => Use transient magnetic field to create magnetic/spin excitations and follow dynamics on ps time scale (e.g., timeresolved MOKE).


Or, some other shape pulse?

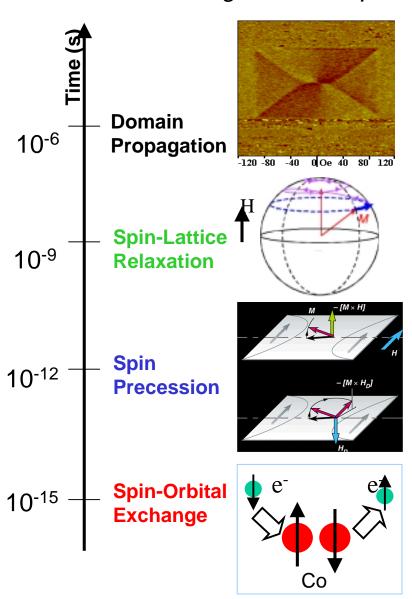
$$\frac{dI(\omega)}{d\omega}_{multiparticle} = [N + N(N-1)f(\omega)]\frac{dI(\omega)}{d\omega} \qquad f(\omega) = \left| \int_{-\infty}^{\infty} e^{i\omega \hat{n} \cdot \vec{r}/c} S(r) dr \right|^{2}$$

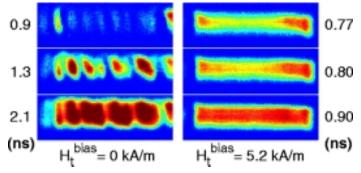
=> shape electron bunch profile to control E-field shape (coll. W/J. Neuman, U. Md.)



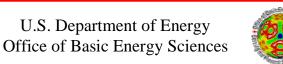
NSLS / SDL Measurement Plans

- "In Situ" (or "in vaulto") Experiments
 - complete study of through-focus THz waveform and 1/2-cycle character.
 - transient magnetization of thin magnetic films.
- Beam transport to external optical table.
 - THz and sampling laser pulses.
 - Transient currents in superconductors (easier at JLab?)
- Beam shaping (for 2nd color)
 - All THz pump-probe (spectroscopy of probe and pump)
 - Superconductors with complex gap structure (cuprates, MgB₂)

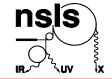



THz Driven Magnetic Dynamics

Use ultra-short magnetic field pulses to induce spin excitations (D. Arena / NSLS)

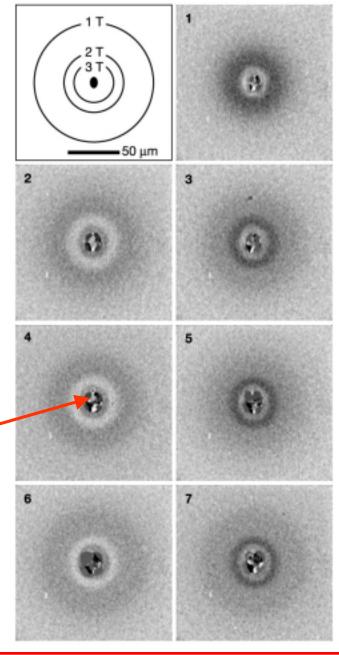

Excitation / Interaction	Timescale (sec)
Exchange interaction	10 ⁻¹⁵
Stoner excitations	10 ⁻¹⁵ - 10 ⁻¹⁴
Spin waves	10 ⁻¹² (low q limit)
Spin – lattice relaxation	10 ⁻¹² - 10 ⁻¹¹ (in manganites)
Precessional motion	10 ⁻¹⁰ - 10 ⁻⁹
Spin injection	TBD
Spin diffusion	TBD
Spin coherence	TBD

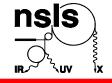
Soft Ferromagnet Dynamics Time-resolved MOKE on permalloy strip. B.C. Choi *et al.*,PRL **86**, 728, (2001)



Other systems of interest: Dilute Mag. Semiconductors, Manganites.

Transient Magnetization Study at SLAC/SPPS


Example:


14 nm thick films of granular CoCrPt (magnetic recording media)

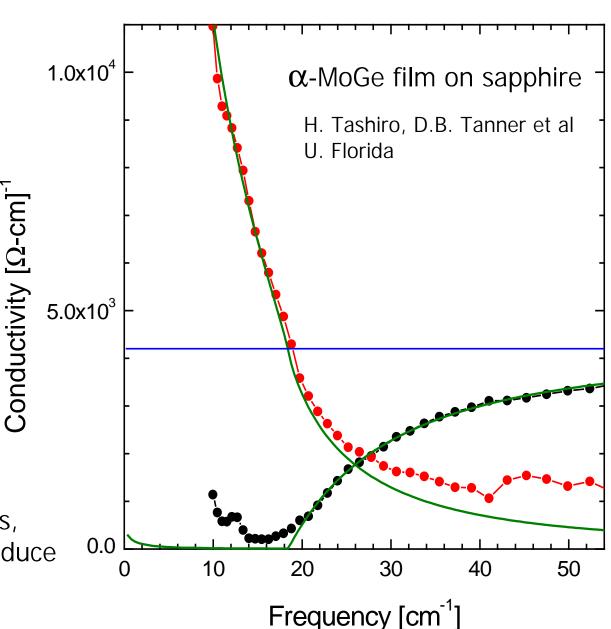
28 GeV electrons (SLAC), 2.3 ps duration.

I. Tudosa et al, *Nature* **428** 831 (2004).

Sample placed *in* the 28 GeV SLAC beam

"Low" Energy Electrodynamics in a Superconductor

What is supercurrent response to 1 MV/cm, ~ 1ps E-field transient? (T<<T_c, ω < ω _g)


Estimate induced current density $J = \sigma E \sim 10^{10} A/cm^2$

Typical $J_C \sim 10^8 \text{ A/cm}^2$


=> "over twist" the local SC phase, spin off vortices?

Experiment:

THz-driven supercurrent excitations, study gap as J_c is approached, produce novel non-equilibrium state.

Summary

Accelerator-based THz Sources should be able to create novel excitations:

- High pulse energy (80 μJ per pulse)
- 1/2 or single cycle pulses, ~ 1 ps or less
- E-field ~ 1 MV/cm, H-field ~ 3kG

Potential experiments will depend on other source / facility aspects

- repetition frequency (<u>big</u> JLab advantage)
- availability of synchronized sampling pulses (coherent EO detection)
- 2nd color pulse (for pump or probe)
 - THz, IR, UV, x-ray?

